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Abstract-A new k+ eddy viscosity model, which consists of a new model dissipation rate equation and 
a new realizable eddy viscosity formulation, is proposed in this paper. The new model dissipation rate 
equation is based on the dynamic equation of the mean-square vorticity fluctuation at large turbulent 
Reynolds number. The new eddy viscosity formulation is based on the realizability constraints; the 
positivity of normal Reynolds stresses and the Schwarz’ inequality for turbulent shear stresses. We find 
that the present model with a set of unified model coefficients can perform well for a variety of flows. 
The flows that are examined include: (i) rotating homogeneous shear flows; (ii) boundary-free shear flows 
including a mixing layer, planar and round jets; (iii) a channel flow, and flat plate boundary layers with 
and without a pressure gradient; and (iv) backward facing step separated flows. The model predictions 
are compared with available experimental data. The results from the standard k-t eddy viscosity model 
are also included for comparison. It is shown that the present model is a significant improvement over 
the standard k+ eddy viscosity model. 

1. INTRODUCTION 

The main task in developing a k-c eddy viscosity model is to provide an appropriate eddy viscosity 
formulation and a. model dissipation rate equation. The standard k--c eddy viscosity model, which 
is widely used in computational fluid dynamics, performs quite well for boundary layer flows but 
not for flows with a high mean shear rate or a massive separation, because in these cases the eddy 
viscosity is overpredicted by the standard eddy viscosity formulation. In addition, the standard 
model dissipation rate equation does not always give the appropriate length scale for turbulence. 
For example, the well-known anomaly about the spreading rate of a planar jet versus a round jet 
is mainly due to I;he model dissipation rate equation. In order to improve the ability of the k+ 
eddy viscosity model to predict complex turbulent flows, these deficiencies in the existing kt eddy 
viscosity model should be removed. The purpose of this study is to propose new formulations for 
both the model dissipation rate equation and the eddy viscosity that can significantly improve the 
performance of the k-c eddy viscosity model. 

The exact dissipation rate equation can be written as, 

I 
c,r + ui6.i = vc,ii - (6 ui ),i - $ (P,kUi,k ).i 

- 2vujuib ui&j - 2vui& uj.k ui. j - 2vui. jui,k uj+k 

- 2VUi.k uj& ui, j - 2v ‘w (la) 

where E = vui, jui, j, C’ = vui, juia j and ( ),,, ( ).i stand for the derivatives with respect to t and xi. All 
the terms on the right hand side of equation (la), except the viscous diffusion term VC.~~, are new 
unknowns. Thus, they must be modeled before this equation can be used for applications. Modeling 
of these new unknowns, which are related to the small scales of turbulence, is extremely difficult. 
Therefore, in the literature, equation (la) is usually not considered as a useful equation to work 
with. Instead, one creates a simple model dissipation rate equation which has a structure similar 
to that of the turbulent kinetic energy equation. That is, the dissipation rate equation also has 
generation and destruction terms which are assumed to be proportional to the production and 
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dissipation of turbulent kinetic energy divided by the large eddy 
assumption, the resulting model dissipation rate equation can be 

I 
f2 

c., + u,c,i = VCTii - (E u, ),, - c,, $qJi., - c,, i 

turn-over time, k/E. With this 
written in the following form: 

Equation (lb) is the standard form of the model dissipation rate equation which has been widely 
used in various turbulence closure schemes. In addition, several modified versions of equation (1 b) 
have also been proposed for different applications, for example, in near-wall turbulent flows [l-4] 
and in rotating turbulent flows [5]. Recently, Lumley [6] proposed a dissipation rate equation based 
on the concept of non-equilibrium spectral energy transfer due to the interactions between eddies 
of different sizes. A new transport equation for an inverse time scale has also been suggested in 
conjunction with his new c equation which is of a different form from that of equation (lb). This 
model mimics the physics of the statistical energy transfer from large eddies to small eddies and 
was successful in the prediction of some turbulent free shear flows [6]. In the present study, we 
explore the possibility of deriving a new model form for the dissipation rate equation which is not 
only physically more related to the original c equation but also simpler and more robust than the 
standard dissipation equation (lb). This is achieved by first developing a model equation for the 
dynamic equation of the mean-square vorticity fluctuation oioi. Once the dynamic equation for 
oiwi is modeled, a model dissipation rate equation can be readily obtained by using the relation 
E = voioi at large Reynolds number. 

The standard eddy viscosity formulation for incompressible turbulence is 

-yuj = -Sk&+ v,(U;,,+ Q) 

k2 
VT= c,- 

E 

(24 

(W 

c, = 0.09 (2c) 

It has been known for long that this model will become non-realizable in the case of large mean 
strain rate (e.g., Sk/E > 3.7 where S = ,/m), because the normal stresses can become negative 
and the Schwarz’ inequality for shear stresses can be violated. To insure realizability, the model 
coefficient C,, must not be a constant and must be related to the mean strain rate. In fact, the 
experiments on boundary layer and homogeneous shear flows also show that the value of C,, is 
quite different in each case. For example, C, is about 0.09 in the inertial sublayer of a flat boundary 
layer is which Sk/c = 3.3, and C,, is about 0.5 in a homogeneous shear flow of Sk/t = 6. According 
to the above considerations, a new formulation for C,, which was suggested by Reynolds [7] and 
Shih et al. [8], is adopted in this paper. 

In the following sections, we will first describe the development of a new model dissipation rate 
equation, and then the development of the new eddy viscosity formulation. The performance of 
the new model will be examined in a variety of flows which include rotating homogeneous shear 
flows, boundary-free shear flows (e.g., a mixing layer, planar and round jets), a channel flow, 
boundary layers with and without pressure gradients, and backward facing step separated flows. 

2. DEVELOPMENT OF THE NEW DISSIPATION RATE EQUATION 

2.1. Dynamic equation for wiwi 

The exact equation for oiwi is 

~ ~ 

+ o$l.u. 

J 1.J 
- vq, joi, j (3) 
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where ui and Vi are the fluctuating and mean velocities, and oi and Qi are the fluctuating and mean 
vorticities which are defined by 

and 

Tennekes and Lumley [9] clearly described the physical meaning of each term in equation (3). The 
first two terms on the right hand side represent the viscous transport and the turbulent transport 
of wiwi, respectively. The third term is the source term which is produced by fluctuating vortex 
stretching and mean vorticity. This term also appears in the equation for RiRi with the same sign, 
hence, it will either increase or decrease C&Q and oiwi simultaneously. The fourth term represents 
the vorticity exchange between oioi and C&Q, because it appears with opposite sign in the equation 
for C&Q. The fifth term represents the source produced by mean vortex stretching. The sixth and 
seventh terms are the production due to fluctuating vortex stretching and the dissipation due to 
the viscosity of the fluid, respectively. Tennekes and Lumley have shown that, at sufficiently high 
turbulent Reynolds numbers, the sixth and the seventh terms in equation (3) are the largest terms 
and are of order: 

~ - 
OiOjUi,jy VWi,jWi,j W S 

( ) 

$R:" 

All the remaining terms on the right hand side, except the second term, are smaller, either of order 
(~~11)) or (u//)~R:‘~. In the above analysis, “Co” denotes the order of magnitude, R, = MI/V is the 
turbulent Reyno1d.s number, and u and 1 are the characteristic velocity and length scales of 
turbulence, respectively. If the terms of order (u3/13)R, or larger were kept in equation (3), then -- 
the evolution of u;+oi would be described by the following equation, 

(F),,, Uj( F),j= -f(u,o,Oi).j+oiWj-vVWi, (5) 

As pointed out by Tennekes and Lumley, at very large Reynolds numbers, equation (5) becomes, 
___ ~ 
wiojui, j = voi. jwi, j (6) 

- . 
Or equivalently, production equals dissipation. This relation indicates that the term ~~~~~~~~ 1s 
always positive. In addition, it indicates that there is a new length scale created by the vortex 
stretching which is related to the derivative of fluctuating vorticity. The vortex stretching tends 
to reduce the sive of eddies and to create a broad spectrum of eddy sizes. However, this 
process must end at a certain level of eddy size because of the smoothing effect of viscosity. 
We expect that the terminal eddy size is the Kolmogorov microscale which corresponds to 
the length scale for the derivative of fluctuating vorticity o~,~. This can be easily verified from 
equation (6). 

2.2. Modeling of the dynamic equation for oioi 

2.2.1. Modeling of o~w~u~,~. We first define a fluctuating 

then 

anisotropic tensor 6; using oiwj 

(7) 

(8) 

where the continuity equation, ui,i = 0, has been used. We expect that the vortex stretching tends 
to align vortex lines with the strain rate and that the anisotropy 6; is mainly due to the anisotropy 
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of the fluctuating strain rate; hence, the anisotropy by may be assumed to be proportional to the 
strain rate sij. That is, 

where 

This leads to 

s = (2s&)“*, Sq = (Ui, j + Uj,i)/2 

wiwjui,j a mkmk y& a mkmks 
S 

(10) 

If we further assume that mkuk and (2s,s,)“* are well correlated, we may write 

WiWiUi,iamm (11) 

Noting that oiwi = 2s,isij at large Reynolds numbers, we may also write 

_. 
Equations (11) and (12) both indicate that the model for oiojui, j IS of order (u’/Z 3)R :‘* as it should 
be. 

2.2.2. Modeling of oiojui, j - voi, joi, j. Equation (5) indicates that oio,ui, j - voi, jwi, j must be 
of order (u3/1 3)R,, because that is the order of the magnitude for the other terms in 

equation (5). Therefore, the model of -VW must cancel i&6& & (or w 0,0,/e) 

in such a way that their difference is smaller than ?&i& & (or B$& o,w,/~) by an 
order of R :j2. This suggests that the sum of these two terms can be related to the following two 
terms: 

(13) 

since both the ratio of s to S and the ratio of k/v to 6 are of order R :‘*. Here, k (z u’) denotes 
the turbulent kinetic energy and S is the mean strain rate (da). As a result, the dynamic 
equation for fluctuating vorticity can be modeled as 

(F),,+ Uj( F),j= -+(uio,w,).j+ ClWkWkS 

(14) 

Note that the denominator of the last term in equation (14) should be k/v for large Reynolds number 
turbulence since the term m is negligible compared to k/v. However, we keep it there in case 
k vanishes somewhere in the flow field to prevent unnecessary singularity. This also reflects the fact 
that the parent term of the model, equation (12), shows no singularity anywhere in the flow field. 
It should also be pointed out that the sum of last two terms in equation (14) models the last two 
terms in equation (5) as a whole and should not be viewed as a model for either individual term. 

2.3. Modeling of the dissipation rate equation 

Noting that at large Reynolds number E = VW and multiplying equation (14) by v, we readily 
obtain a modeled dissipation rate equation, 

6.( + Uj6.j = -(UjL’),j + Cl SC - C* k + fi 
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Table I. Anisotrouv comoonent b,, 

Exp. Standard Present 

Boundary layer b,, -0.149 -0.149 -0.149 
Homoge. shear b,, -0.142 -0.274 -0.18 

The model coefficients, C, and C,, are expected to be independent of the Reynolds number as the 
Reynolds number becomes large. We note that C, and C, may be affected by solid body rotation 
imposed on turbulence through the reduction of fluctuation vortex stretching, WiOjUi,j, as was 
shown by Bardina [5]; however, this effect is rather weak compared to the other mechanisms. For 
example, Reynolds stresses will first be substantially affected by rotation and result in a substantial 
change of the turbulent field, say k, as shown in the calculation of the rotating homogeneous shear 
flows in Section 4.1. This will also affect the evolution of 6 through, say, k. The signs of C, and 
C, can be easily determined. For example, in a decaying grid turbulence, only the last term on the 
right hand side of ‘equation (15) is non-zero and must be negative, hence C, must be positive. For 
the case of homogeneous shear flow, both the turbulent kinetic energy and its dissipation rate 
increase with time so that the “source” term in equation (15) must be positive, hence C, must be 
positive. In fact, these two types of flows [lo, 111 will be used for determining the coefficients C, 
and C,. 

The difference between the present model dissipation rate equation, equation (15), and the 
standard model dissipation rate equation, equation (lb), is the “source” term. The Reynolds 
stresses do not appear in equation (15). Consequently, the present model dissipation rate equation 
will be more robust than the standard model dissipation rate equation when it is used in conjunction 
with second-order closure schemes, since S normally behaves better than the Reynolds stresses in 
numerical calculations, especially for the cases with poor initial conditions. In addition, the present 
form of the “prod.uction” term is similar to that proposed by Lumley [6] which is based on the 
concept of spectral energy transfer. We believe that the present form of the model dissipation rate 
equation describes; the turbulent vortex stretching and dissipation terms more appropriately. 

Equation (15) c,an be applied in conjunction with any level of turbulence closure; however, the 
turbulent transport term (E’u~),~ needs to be modeled differently at different levels of turbulence 
closure. Here, we (apply equation (15) to a realizable eddy viscosity model which will be described - 
in the next section, and where (t’~~),~ is modeled as 

(C’Ui ),i = - ( > 2 [,i 
ac .i 

(16) 

The model coefficients C,, C, and crc will be determined later. 

3. REALIZABLE EDDY VISCOSITY MODEL 

Shih et al. [8] proposed a realizable Reynolds stress algebraic equation model. Its linear form 
represents an isotropic eddy viscosity model: 

(17.1) 

(17.2) 

Here the coefficient C, is not a constant. The experimental as well as DNS data on the inertial 
sublayer of a channel or boundary layer flow suggest that C, = 0.09. On the other hand, for a 

ok 

1.0 

c< 

1.2 

Table 2. Model coefficients 

c, G C&l A0 

equation (25) 1.9 eauation (19) 4.0 
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Fig. 1. Time evolution of turbulent kinetic energy in rotating Fig. 2. Time evolution of turbulent kinetic energy in rotating 
homogeneous shear flows. n/S = 0.0 and -0.5. homogeneous shear flows. a/s = 0.25 and 0.5. 
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homogeneous shear flow, C, = [ -(~)/k]/(k/~)(~U/~y) which is about 0.05 from the experiment 
of Tavoularis and Corrsin [l I]. Based on the realizability conditions: 

220 (CI = 1,2,3) 

3 $$l @=1,2,3;/?=1,2,3) (18) 
u B 

Reynolds [7] and Shih et al. [8] proposed the following formulation for the coefficient of C,,: 

c, = 
1 

A,+A,U’*‘~ 
(19) 

In the formulation of Shih et al. [8], 

u (*) = J_. 

n, = n, - 26, Wk (20) 

R,=Q-QW, 
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Fig. 3. Self-similar mean velocity profiles for a planar mixing 
layer. 
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Fig. 4. Self-similar mean velocity profiles for a planar jet. 
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where q is the mean rotation rate viewed in a rotating reference frame with the angular velocity 
ok. The parameter A, is determined by 

A, = $ cos 4, q5 = f arc cos($ W) 

(21) 

3.1. Calibration oj. the model coejicient A, 

The new eddy viscosity formulation of equations (17), (19), (20) and (21) satisfies the realizability 
constraints equation (18), and hence is a realizable model. The only undetermined coefficient is A,, . 
If we assume for simplicity that A0 is a constant, then the value of A,, can be calibrated by one 
of the simple flows, such as a homogeneous shear flow or a boundary layer flow. The value of A,, 
will depend on the flow used for the calibration. Here, we choose a boundary layer flow in hope 
that the model will be able to reproduce the log-law of the inertial sublayer. This leads to A0 = 4.0 
which corresponds to C,, = 0.09 in the inertial sublayer. For the homogeneous shear flow of 
Tavoularis and Carrsin [ 111, equation (19) gives C,, = 0.06 which is much closer to the experimental 
value of 0.05 than. that of the standard C, = 0.09. The component of the anisotropy b,, (i;;/2k) 
for both the flows is listed in Table 1 which shows that the present form of C, also produces 
reasonable b,, compared to the standard form of C,. 

Now let us go back to the modeled k and L equations, 

(22) 

(23) 

and determine the coefficients in equation (23). 

3.2, Calibration qf the model coeficients C,, C, and o< 

In decaying grid turbulence at large Reynolds number, the equations for turbulent kinetic energy 
k and its dissipation rate E are 

k,,= -6, E.,= -C2; 

VIVe 

0.8 

0.8 

A Wygnanrki & Fielder 

--- rkem&l 
- prerentmcds4 

0.00 0.05 0.10 0.15 0.20 0.25 

Y/X 

Table 3. The spreading rates of turbulent free shear flows 

Case Measurements ske Present 

Mixing layer 0.13-0.17 0.152 0.151 
Planar iet 0.105-O.ll 0.109 0.105 

Fig. 5. Self-similar mean velocity profiles for a round jet. 
Round;et 0.085-0.095 0.116 0.094 
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b&=(;)-“, d=($ 

the following equations can be obtained from the k and L equations: 

cr=n+l, c*_nfl 
n 

Experiments [lo] show that the decay exponent n varies from 1.08 to 1.30. In this study we choose 
C, = 1.9 which corresponds to n = 1 .l 1. After C, is chosen, we use the experimental data of 
homogeneous shear flow [l l] and boundary layer flow to determine the coefficient C, which is found 
to be a simple function of the time scale ratio of the turbulence to the mean strain, q: 

C, =max{O.43,&} (25) 

where 

The value of a< will be estimated using the log-law in a boundary layer flow. The following relations 
hold in the inertial sublayer: 

+,,~+C 
7 k 

-iiwu;, 
-au 

-uvay =lL 
(26) 

Analyzing the dissipation rate equation in the log-law region, we obtain 

k2 
a, = 

Cz&- C, 
= 1.20 (28) 

where the von Karman constant k = 0.41. The model coefficients are summarized in Table 2. 

4. MODEL APPLICATIONS 

The results of turbulent flow calculations using the proposed new turbulence model are 
shown in this section. These include (i) rotating homogeneous shear flows, (ii) boundary-free shear 
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Fig. 6. Mean velocity profile for turbulent channel flow at Fig. 7. Skin friction coefficient for the zero pressure gradient 
Re, = 395. turbulent boundary layer. 
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flows, (iii) a channel flow and boundary layers with and without pressure gradients, and (iv) 
backward-facing ste:p flows. The results of the present and the standard k-+ models are compared 
with DNS, LES and experiments. 

4.1. Rotating homogeneous shear frows 

The comparisons are made with the large eddy simulation of Bardina et al. [5] for four different 
cases of Q/S (which are Q/S = 0.0, n/S = -0.50, n/S = 0.25, and Q/S = 0.50). The initial 
conditions in all these cases correspond to isotropic turbulence and co/Sk, = 0.296. Figure 1 
compares the evolution of turbulence kinetic energy, normalized by its initial value k,,, with the 
non-dimensional time St for the cases of Q/S = 0.0 and Q/S = -0.5. For the first case both the 
present and the standard k+ (denoted by ske hereafter) models show the trends exhibited by LES, 
with the present model closer to the LES data. For the second case the ske model does not show 
the effect of rotation on turbulence as it gives the same growth rate of turbulence kinetic energy 
as it did for the no rotation case, a result which is already known. On the other hand the present 
model is in reasonable agreement with the LES data as it shows the decay of the turbulence kinetic 
energy with time. Figure 2 compares the evolution of turbulence kinetic energy for Q/S = 0.25 and 
Q/S = 0.5. For the first of these cases the LES shows that the growth rate of the turbulence 
kinetic energy is increased over the no rotation rate case. The present model is able to pick up this 
trend while the ske model does not. For the case of Q/S = 0.5 the agreement between the present 
model and the LES is not as good but the present model still performs a lot better than the ske 
model. 

4.2. Boundary -free shear jlows 

Calculations using the present and the ske models were performed for a mixing layer, a planar 
and a round jet. Grid-independence studies (with 100 and 150 grid points across the shear layer) 
show that the self-similar profiles are essentially the same. Figures 3,4 and 5 show the comparisons 
of the self-similar mean velocity profiles from the model predictions, obtained by using the fine grid, 
and the various measurements for the mixing layer, planar and round jets, respectively. The 
comparisons of the Reynolds shear stress and turbulent kinetic energy profiles can be found in Shih 
et al. [12] and are not included here due to space limitation. For the mixing layer, the results are 
shown in a self-similar coordinate q defined as 

yl = Y - Yo.5 

Yo.9 - Y0.l 

where yo,, , y,,, and y,,, denote the locations where the ratio of the local mean velocity to that of 
the free stream are: 0.1, 0.5, and 0.9, respectively. Figure 3 shows that the mean velocity profiles 

0.0°5 r---l 0’Oo5 r-----l 
0 EXP. 

--- sk. model 
- prwent model 

O.Ool t I I I I I 0.000 . I 
x m 1 .o 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

Fig. 8. Skin friction coefficient for the Herring and Norbury x @I 

flow [20]. Fig. 9. Skin friction coefficient for the Bradshaw flow [21]. 
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of the mixing layer predicted by either the present model or the ske model agree well with 
experimental data of Pate1 [13]. The present model, however, gives better predictions of the 
turbulent kinetic energy and the Reynolds shear stress distributions than the ske model. This is 
especially true for their peak levels. The predictions for the planar jet are shown in Fig. 4. The 
model predictions are compared with the measurements of Gutmark and Wygnanski [ 141, Bradbury 
[15], and Hekestad [16]. The predictions given by both the present model and the ske model agree 
well with the experimental data. For the round jet, the comparisons are made between the model 
predictions and the measurements of Wygnanski and Fielder [ 171 and Rodi [ 181 and are shown in 
Fig. 5. The profile distributions of the mean velocity predicted by the current model agree well with 
the experimental data, while the ske model predicts a much wider distribution. Significant 
improvement is also achieved in the prediction of the turbulent shear stress profile over the ske 
model in terms of both the centerline level and the overall distribution. The calculated spreading 
rates of these flows are compared with measurements and are shown in Table 3. The present model 
yields better predictions than the ske model; especially, the well-known spreading rate anomaly of 
planar and round jets (i.e., the measured spreading rate of a round jet is always smaller than that 
of a planar jet, but the model prediction 
completely. 

4.3. Channel flow and boundary layer J?OWS 

Turbulent channel flow and boundary 

usually contradicts the measurements) is removed 

layer flows with/without pressure gradients were 
calculated to test the performance of the present model for wall bounded flows. Since the present 
model is proposed for turbulent flows away from the wall, the integration was carried out down 

to Y + = 80, rather than to the wall, in the calculations. At y + = 80, DNS values were used as the 
boundary conditions for the turbulent channel flow and wall functions were used for the turbulent 
boundary layer flows. 

The velocity profile for 2D fully developed turbulent channel flow at Re, = 395 is shown in 
Fig. 6. This flow was calculated by Kim [19] using direct numerical simulation. Both the 
present model and the ske model agree reasonably well with the DNS data. Figure 7 shows 
the skin friction coefficient for the flat plate boundary layers with the Reynolds number up 
to Re, = 16,000. Here, comparison is made with the experimental results of Wieghardt [20]. Both 
the present model and the ske model give good agreement with the experiments. Results for velocity 
profiles and boundary layer development can be found in Ref. [ 121. Overall, the present model gives 
a slightly better prediction for boundary layer development. 

Figure 8 shows the results for the Herring and Norbury flow [21], which is a boundary layer 
flow under favorable pressure gradient. The ske model gives better predictions for the skin friction 
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--- hmodel 
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4.0 Table 4. Comparison of the reattachment point locations 

Case Measurement ske Present 

Fig. 10. Skin friction coefficient for the Samuel and Joubert FKJ 6.1 4.99 6.02 

[221. 710.5 6.35 7.50 
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x/h 
Fig. 11. Skin friction coefficient along the bottom wall. 

DS-case. 

x/h 
Fig. 12. Static pressure coefficient along the bottom wall. 

DS-case. Legend: see Fig. Il. 

coefficient. However, the present model gives a better prediction for the boundary layer thickness 
(see Ref. [12] for detail.) The turbulent boundary layer under adverse pressure gradient studied by 
Bradshaw [22] and the turbulent boundary layer under increasingly adverse pressure gradient 
studied by Samuel and Joubert [23] were also calculated. The results are shown in Figs 9 and 10, 
respectively. In both cases, the present model gives better predictions. 

4.4. Backward-facing step flows 

The performance of the present model for complex recirculating flows is demonstrated 
through calculations for two backward-facing step flows, one (DE&case [24]) with smaller and 
the other (KKJ-case [25]) with larger step height, both of which have been extensively used 
to benchmark calculations of separated flows. The calculations were performed with a 
conservative finite-volume procedure. The convection terms of the governing equations were 
discretized by a second-order accurate and bounded differencing scheme [26], and all the 
other terms by the standard central differencing scheme. Sufficiently fine grids, with 201 x 109 
points in the DS-case and 199 x 91 points in the KKJ-case, were used to establish numerical 
credibility of the solutions. The computational domain had a length of 50 step heights, one-fifth 
of which was placed upstream of the step. The experimental data were used to specify the inflow 
conditions, the fully-developed flow conditions were imposed at the outflow boundary, and the 
standard wall function approach [27] was used to bridge the viscous sublayer near the wall. 
Table 4 shows the comparison of the reattachment lengths. Figures 11-14 compare the skin 
friction, the pressure distribution along the bottom wall and the turbulent stress profiles in the 
DS-case. All the quantities were normalized by the step height h and the experimental reference 
free-stream velocity U,,. The detailed comparison in both cases are given in Shih et al. [12]. The 
comparison shows that the overall performance of the present model is better than that of the ske 
model. 

-0.5 0.0 0.5 1.0 
-1 OOuv/Uref**2 iOO(uu+w)/Uref**2 

Fig. 13. Turbulent shear stress profiles. DS-case. Legend: see Fig. 14. Turbulent normal stress profiles. DS-case. Legend: 
Fig. 11. see Fig. 11. 
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5. CONCLUDING REMARKS 

A new k+ eddy viscosity model is proposed in this paper. It consists of a new model dissipation 
rate equation and a new realizable eddy viscosity formulation. The new model dissipation rate 
equation is based on the dynamic equation for fluctuating vorticity. The new eddy viscosity 
formulation described in Section 3 ensures realizability and contains, as well, the effect of mean 
rotation on turbulence stresses. The present model is tested in various benchmark flows including: 
rotating homogeneous shear flows; boundary-free shear flows; channel and flat boundary layer 
flows with and without pressure gradients; and backward facing step flows. The results show that 
the present model performs better than the standard k-t model in almost all the cases tested. The 
well-known spreading rate anomaly of planar and round jets is completely removed. In addition, 
the new model dissipation rate equation is expected to enhance the numerical stability in turbulent 
flow calculations, especially, when it is used in conjunction with more advanced closure schemes, 
such as second order closures. We have also just finished implementing the present model 
dissipation rate equation into the LRR [28] second order closure. Preliminary results show that 
the initial decay behavior of k and 6 and the effect of rotation on both k and c for initially isotropic 
rotating homogeneous shear flows are well captured. 
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